Answer:
Option A
Explanation:
Equation of tangent at $(3\sqrt{3}\cos\theta, \sin \theta)$ on the ellipse $\frac{x^{2}}{27}+\frac{y^{2}}{1}=1$ is
$\frac{3\sqrt{3}x \cos \theta}{27}+\frac{y \sin \theta}{1}=1$
$\frac{x}{3\sqrt{3}} \cos \theta+\frac{y \sin \theta}{1}=1$
Sum of intercepts of tangent
i.e, $L=3\sqrt{3} \sec \theta+cosec \theta$
$\because \frac{dL}{d \theta}=3\sqrt{3} \sec \theta \tan \theta- cosec \theta \cot \theta$
For maxima or minima $\frac{dL}{d \theta}$= 0
$3\sqrt{3} \sec \theta \tan \theta- cosec \theta \cot \theta=0$
$\tan ^{3} \theta = \frac{3}{3\sqrt{3}}\Rightarrow \tan \theta =1\sqrt{3}\Rightarrow \theta = \frac{\pi}{6}$
Minimum at $\theta$ = $\frac{\pi}{6}$