<<91011121314>>
56.

If 'a' is the point of discontinuity  of the function 

$f(x)=\begin{cases}\cos 2x & for -\infty<x<0\\e^{3x} & for 0\leq x<3\\ x^{2}-4x+3& ,for 3\leq x\leq6\\\frac{\log(15x-89)}{x-6}&, for x>6\end{cases}$

Then ,   $\lim_{x \rightarrow a}\frac{x^{2}-9}{x^{3}-5x^{2}+9x-9}$=


A) 1

B) 0

C) 6

D) 3



57.

If $e_{1}$  is the eccentricity  of the ellipse   $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$  and $e_{2}$ is the eccentricity of a hyperbola  passing through  the foci of the given ellipse  and $e_{1}e_{2}=1$ , then the equation of such a hyperbola among the following is 


A) $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

B) $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$

C) $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$

D) $\frac{x^{2}}{25}-\frac{y^{2}}{9}=1$



58.

A tangent is drawn  at  $(3\sqrt{3}\cos\theta, \sin \theta)\left(0< \theta < \frac{\pi}{2}\right)$  to the ellipse  $\frac{x^{2}}{27}+\frac{y^{2}}{1}=1$ . The value of $\theta$  for which the sum of the intercepts on the coordinate axes made by this tangent attains the minimum , is 


A) $\frac{\pi}{6}$

B) $\frac{\pi}{3}$

C) $\frac{2\pi}{3}$

D) $\frac{2\pi}{4}$



59.

If  one of the diameters of the circle $x^{2}+y^{2}-2x-6y+6=0$   is a chord to the circle with centre (2,1), then the radius of the bigger circle is 


A) 6

B) 4

C) 2

D) 3



60.

If getting a head on a coin when it is  tossed is considered as success, then the probability  of having  more number of failures when  ten fair coins are tossed simultaneously , is 


A) $\frac{105}{2^{8}}$

B) $\frac{73}{2^{7}}$

C) $\frac{193}{2^{9}}$

D) $\frac{638}{2^{10}}$



<<91011121314>>